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Abstract 
 
This paper focus on the detection of faults that take place abruptly and in situations where the time from 
the fault appearance to detection is important; in this setting the before and after strategy is inadequate.  
The general scheme for online detection uses a filter that represents the reference state and infers on the 
appearance of damage from inspection of the outputs. We examine a variant where appearance of the fault 
is inferred by inspecting the value of a parameter of a model of the healthy state that is estimated using Ex-
tended Kalman Filter (EKF) based augmented state approach. The selected parameter is not required to be 
the one where the damage takes place but can be a surrogate whose sensitivity to the damage is used for 
detection.  A parameterization scheme is presented in order to obtain Jacobian of the state space models re-
quired in the EKF.  

 
 

1 INTRODUCTION 
 

Damage in structural systems is typically defined as changes that cause deterioration in some parameters 
that describe the stiffness. In damage detection the objective is to have a scheme that can detect, as early as 
possible, changes that may affect the performance of the system. In the “before and after” strategy the op-
erating premise is that no damages take place during the data collection intervals and damage is identified 
from changes between two models. In this paper our focus is on the detection of damages that takes place 
abruptly and in situations where the time to detection is important. Online detection is typically done by 
formulating filters that represents the reference state and damage is inferred by inspecting the output of the 
filter as it processes the incoming measurements.  

In this paper we introduce an online detection filter that detects damage by tracking the values of some 
parameter in a model. The key idea investigated is whether selection of the parameter to be tracked can be 
done without regard to whether it is in fact the parameter that is affected by the damage. To the best of the 
writer's knowledge, damage detection based on filters was first discussed by Mehra and Peshon (1971), 
who used the whiteness property of the Kalman filter innovation process as a feature. The seminal work on 
model based damage detection filters, where the objective is not just detection, but also isolation, i.e., iden-
tification of the specific nature of the fault, appears in (Beard 1971) and (Jones 1973). One of the first ap-
plications of filter based damage detection in structural engineering is due to Fritzen, et al. (1995), who 
used a bank of Kalman filters to detect damage.  
     The idea of appending the parameters to the state vector for their online identification is used in (Kopp 
and Orford 1964). Since the state estimation problem becomes nonlinear in this case, even if the system it-
self is linear, the extended Kalman filter is used here to perform the estimation. A fundamental contribution 
on the theory of the extended Kalman filter as a parameter estimator for linear systems is the work by 
Ljung (1979) who presented asymptotic behaviour of the filter. Panuska (1979) presented another form of 
the filter, where the state consists only of the parameters that are estimated and extended the work to the 
systems which are subjected to the correlated noise, (Panuska 1980).  In recent years the EKF approach for 
parameter estimation has received significant attention in structural engineering with applications in dam-
age detection appearing in (Yang et al. 2005, Liu et al. 2009).  



2 EKF-BASED COMBINED STATE AND PARAMETER ESTIMATION 

In this section we outline the EKF approach to the parameter estimation problem in the case where the 
system is linear and the nonlinearity arises from the augmentation of the state vector with unknown pa-
rameters. The system considered is assumed to have the following description 

 
 ( ) ( ) ( ) ( ) ( ) ( )x t A x t B u t Lw t     (1) 
                                                      k k ky Cx v    (2) 

             
where ( ) nxnA  �ò , ( ) nxrB  �ò and nxsL �ò  are the transition, input to state and process noise to state 
matrices, respectively and   is a finite dimensional vector of parameters. mxnC �ò  is state to output ma-
trix. 1( ) rxu t �ò , 1( ) nxtx �ò  and 1mx

ky �ò  denote deterministic known input, state and measurement, 
respectively. The 1( ) sxw t �ò  is the process noise and kv  is the measurement noise. In the treatment here 
it is assumed that these are uncorrelated Gaussian stationary white noise sequences with zero mean and co-
variance of Q  and R  respectively. Additionally, it's also assumed that ( )w t  and kv  are independent of 
 . One begins by augmenting the state with the parameter vector ( )t  , namely 
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The second step involves comprising a new state space model for the augmented state, namely 
 

 ( ) ( ) ( ) ( ) ( ) ( )z t A z t B u t Lw t     (4) 
where 
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Prediction Step: 

The a priori estimate of the state is obtained from 
 

 ˆ ˆ( ) ( ) ( ) ( ) ( )z t A z t B u t    (8) 

 

and we take ˆ ˆ( )kz z t  . The a priori state error covariance is calculated from  

 ˆ ˆ( ) ( ( )) ( ) ( ) ( ( ))T TP t F z t P t P t F z t LQL    (9) 
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with q  as the covariance of the pseudo noise introduced to drive the filter to change the estimate of  . 

ˆ( ( ))F z t  is the Jacobian of the nonlinear function in Eq.(9) at nominal ˆ( )z t  and is given by 
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and we denote kP P  

Update Step: 

The posterior estimate of the state is obtained from, 
 

 ˆ ˆ ˆ( )k k k k kz z K y Cz      (13) 

where 
 
               0C C                  (14) 

 

The Kalman gain kK and the posterior error covariance kP are calculated from 

 

 1( )T T
k k kK P C CP C R     (15) 

 ( ) ( )T T
k k k k k kP I K C P I K C K RK      (16) 

 
The filter is initialized with 
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  Convergence of the augmented filter model requires  
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where xK  is the partition of the Kalman gain, corresponding to the un-augmented state, namely 
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The augmented state approach requires writing the state space formulation explicitly as a function of the 

state and parameters in order to calculate the Jacobian ˆ( ( ))F z t   at each time step, which is easy to imple-
ment when small models are taken into consideration. However when the analytical model and the parame-
ter vector is large, that is simply impractical. We present a parameterization scheme in appendix section 
that allows implementing the EKF-based parameter estimation algorithm efficiently regardless of the size 
of the model and parameter vector. 



2.1 EKF with Fading Memory 

 Examination shows that the EKF combined state and parameter estimation responds to time variant 
changes in the parameters very slowly.  The reaction time can be improved by using the concept of a fad-
ing memory (Fagin 1964). The equations describing the EKF with fading memory are identical to the stan-
dard EKF except that an additional step for fading memory is introduced with a forgetting factor matrix af-
ter the propagation of state error covariance in Eq.(16), which is 
 

 T
k kP P     (21) 

 
where  is a diagonal matrix with size (n+p)x(n+p), where n and p represent the numbers of states and pa-
rameters, respectively. The first n diagonal elements of are set to 1.0 whereas the next p elements, de-
noted by 1 , 2 ,… p   are chosen based on how much forgetting of the past data is  required. When 

1   there is no fading and in most applications   is taken only slightly greater than 1 (e.g., 1.001  ).   

3 NUMERICAL EXPERIMENT: PLANAR TRUSS STRUCTURE 

 This simulation experiment examines the fictive updating approach for damaged detection using a truss 
structure. The planar truss structure considered is depicted in Fig.3. All the bars are made of steel (with E = 
200 GPa) and have an area of 64.5 cm2. Mass is 1.75*105 kg at each coordinates and damping is taken as 
2% in all modes.  

 

 
 

Figure 3: Truss Structure Utilized in the Numerical Testing of the Fictive Updating  
 

 We obtain results for two sensor arrangements: (1) Five sensors recording motion in the vertical direc-
tion placed at coordinates {2, 4, 6, 8, and 10} (2) Nine sensors recording motion in the vertical direction 
are located at each of the unsupported joints of the lower chord. The sensor at the coordinate 6 in both ar-
rangements is also recording the horizontal velocity. The deterministic excitation is taken as a segment of 
white noise process having a unit variance and is applied at coordinate 5. Unmeasured excitations are as-
sumed to act at coordinates {14, 16, and 20} in the vertical and horizontal directions. The deterministic in-
put signal is assumed contaminated by and added noise equal to 10 % of the RMS of the excitation.  The 
output noise is taken to have an RMS equal to 10 % of the RMS of the response measured at the sensor lo-
cation. 

We consider three damage cases defined as 20% followed by 40% loss of stiffness in each of the three 
bars (one at a time) denoted as E1, E2 and E3. The fictive updating is performed in each case from a simu-
lation of 600 seconds. The fading memory factor of the EKF is fixed as 1.003. The first five un-damped 
frequencies of the reference model and damaged models for the three cases are depicted in Tables 1-2. 

 
Table 1: First Five Frequencies (Hz) of the Truss Model with 20% Damage Extent in Three Cases 

Freq. Undamaged Bar E1 Bar E2 Bar E3 
No Frequency Freq. %Change Freq. %Change Freq. %Change
1 0.649 0.642 1.217 0.644 0.870 0.645 0.667 
2 1.202 1.202 0.001 1.202 0.006 1.197 0.454 
3 1.554 1.523 2.066 1.550 0.281 1.553 0.087 
4 2.455 2.379 3.087 2.445 0.411 2.449 0.247 



 
 
 
 

 
   

5 3.302 3.293 0.264 3.298 0.121 3.274 0.852 
 

 
Table 2: First Five Frequencies (Hz) of the Truss Model with 40% Damage Extent in Three Cases 

Freq. Undamaged Bar E1 Bar E2 Bar E3 
No Frequency Freq. %Change Freq. %Change Freq. %Change
1 0.649 0.629 3.211 0.635 2.279 0.638 1.753 
2 1.202 1.202 0.041 1.202 0.017 1.188 1.171 
3 1.554 1.472 5.334 1.543 0.745 1.551 0.221 
4 2.455 2.287 6.831 2.427 1.129 2.439 0.660 
5 3.302 3.283 0.558 3.287 0.436 3.228 2.251 

 
Finite Element Model Based 

We use the stiffness of bar E1 as the parameter to be updated. The results are depicted in Fig.4. As can 
be seen, the update is essentially exact when the damage is actually in bar E1 (as one would expect since 
the model is exact). When the damage is on bar E2 the result is indicative of the changes, although the up-
date is much smaller than the actual change in the bar and the parameter does not stabilize during the time 
window when nothing is changing. When damage is on bar E3 the result is poor.  

 

 
Figure 4: Fictive Parameter Updating of the bar E1 in FE model. Top: Sensor set 1, Bottom: Sensor set 

2. Damage Cases; Left: Bar E1, Middle: Bar E2, Right: Bar E3. 
 

Modal Model Based 
 Another possibility is to track a modal parameter such as frequency. In this case the update is not truly 
fictive because the frequencies do in fact change as a result of the damage but we retain the term partly for 
convenience and partly because only one frequency is allowed to change here. In the modal model the ma-
trices are formed using the first 15 pairs of complex modes. The results are depicted in Fig.5.  

 



 
Figure 5: Fictive Updating of the first frequency of the modal model.Top: Sensor set 1, Bottom: Sensor 

set 2. Damage Cases; Left: Bar E1, Middle: Bar E2, Right: Bar E3. 
As can be seen, for the damage case of bar E1, parameter updating lead to 2.5% and 6-5% change in the 

first frequency, which is larger than the 1.2% and 3.2% real change as seen in Tables 1-2; this is a positive 
feature. The results for bar E3, however, are less satisfactory.  Sensor set 2 lead to improved results com-
pared to set 1, as one would expect since more information is used.  

4 CONCLUSIONS 

The paper examines the merit of a damage detection strategy based on fictive parameter updating. The 
objective is the detection of damages that take place abruptly and in situations where the time from the 
damage appearance to detection is important. The merit of the approach is simplicity but the negative fea-
ture detected in this work is the fact that the updated values do not seem to display strong convergence. In 
the presence of non-stationary coloured input noise one expects that the parameters would tend to fluctuate 
when there is no change and this will make it more difficult to identify small changes. Further research to 
determine performance under these conditions is needed before an assessment on merit can be made.  
 

5 APPENDIX 

Let the equations of equilibrium of a linear dynamical system be written as 
 

 2( ) ( ) ( ) ( ) ( ) ( ) ( )m c kM q t C q t K q t b u t       (22) 
 

where the dot represents differentiation with respect to time, 1xq �ò  is the displacement vector at the de-
grees of freedom. M , K  and C  are mass, stiffness and damping matrices. m , k  and c are finite 
dimensional parameter vectors which contain parameters related to the mass, stiffness and damping proper-
ties of the elements of the model. We define global parameter vector as 
 

 
Tm k c        (23) 

 
and parameter vector of the jth member is  
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The dynamical system matrices consist of f elements can be parameterized as 
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where jM , jK  and ( ) jC  denote the stiffness, mass and damping matrices for the jth element in global 
coordinates and p is the number of the unknown parameters in the structural system matrices. The parame-
ters are in order such that 1 to p refer to unknown parameters and p+1 to f refer to known parameters. 
These matrices can be partitioned as follows 

 ( )m
P RM M M    (28) 

 ( )k
P RK K K    (29) 

 ( )c
P RC C C     (30) 

 
where subscript P  and R  denote the partition due to unknown and known parameters respectively, 
namely 
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The state space description of the dynamic linear system in Eq.(22) can be written as 
 
 ( ) ( ) ( ) ( ) ( )x t A x t B u t    (34) 

 
where ( )A   and ( )B   are given in the form, 
  (35) 
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Using definitions given in Eqs.(28)-(30), one can partition  ( )A   and ( )B   in Eq.(34) due to unknown 
and known parameters as follows, 

 
 ( ) R PA A A    (38) 

 ( ) R PB B B                                        (39) 
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Now we recall the Jacobian of the augmented state space model as follows 
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where 
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jd  is a column vector with the size nx1 where we recall that n is order of the system. The size of Jacobian 

matrix, ˆ( ( ))F z t is (n+3p)(n+3p). It's apparent that the calculation of ˆ( ( ))F z t requires only the dynamical 

matrices of the elements in global coordinates that parameters are being updated, namely jM , jK  and 

( ) jC .  After one have the a priori estimate of the augmented state, the jd 's for each parameter can be 

calculated from Eqs. (47)-(49), then Jacobian matrix ˆ( ( ))F z t  is constructed from Eq.(43). 
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